Calculating Transient Response

Simplified Derivation from Frequency

and Phase Characteristics

ACBETH, crossing a blasted heath, was not
M surprised to encounter three witches brew-
ing up : nowadays he would expect to find a
rather worn-looking mansion filled with engineers
muttering : ‘“ When the mu-beta comes to one-
nought, beware, beware !”” There they sit, adding
more and more feedback round more and more loops,
and as the amplifiers get more linear, new troubles
appear on the horizon. One of these is a problem
which has long been discussed ; when you talk about
0.1 per cent. harmonic distortion, which harmonic?
If you don’t think it matters let me just remind you
that you can hear a 1,000-c/s tone which is- 36db
lower than the quietest 100-c/s tone you can hear,
so that 0.1 per cent. of 20th harmonic of 50 c/s 1s as
audible as about 6 per cent. of second harmonic.
As you know, feedback amplifiers tend to produce
these higher  harmonics in the overload region—in
fact that is the only way you know that they are
overloaded. The other problem is that of transient
response.

There is an enormous amount of nonsense written
about transient response, especially as it affects the
loudspeaker. Broadcast programmes are amplified,
piped round the country and re-amplified. In the
course of this process, every effort is made to keep the
frequency response flat, up to 10 ke/s, or whatever the
frequency is. Above this, transformer after transformer
provides a 12 db/octave cut-off. So what can you do,
chum ?

Transient response is important though for three,

: reasons: television,
of course, in servo

(2) ; .
amplifiers and in
amplifiers in tan-
dem. The first two
applications are
fairly obvious, but
the third deserves a
fuller explanation.
Suppose that we are
operating two amp-
r lifiers, one driving
the other: this is
- quite a common sit-
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Fig. 1. (a) Basic trape-
zoidal response which
gives the transient re-
sponse shown in Fig. 2.
The more complicated
response in (b) may be
resolved into the two
trapezoidal  responses
shown- in (c) and (d).
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uation, for one may be a microphone amplifier and the
other a power amplifier. If the first amplifier produces
a large, though very short, overshoot there is no direct
audible effect, because the frequencies in the transient
peak are above the limit of hearing. This peak may,
however, drive some stage of the power amplifier
into grid current, and the stage may then be held at an
improper bias by the grid CR network for an appreciable
time. During this time, perhaps 1/10th of a second, the
stage will produce more distortion than usual, and as
the gain has been driven down, the feedback will be
less effective than normal : muddy transients are the
result,

It need not be two amplifiers in two boxes for this
effect to be apparent. A single multistage amplifier
with a transformer in the middle, or perhaps with the
feedback arranged in two separate loops can cause
trouble of this kind. As our amplifier designs get more
and more sophisticated we need to watch out for more
and more of these obscure effects.

Circumventing Laplace

The obvious thing for the conscientious designer to
do is to calculate the transient response, just as he
calculates the frequency response of a feedback ampli-
fier before he starts. Very few designers do this,
because they imagine they will be confronted by an
immense formula to be fed into the Laplace Transform
machine. If this were the only way of studying
transient response they would—to use an Antipodean
phrase—be too right. Fortunately G. F. Floyd, of the
Massachussetts Institute of Technology, has described
in a thesis* a simpler way of dealing with the problem.
Floyd’s ‘method, dehydrated and predigested and
generally made fit for engineers’ consumption, is the
subject to reason about to-day.

First of all we need to know the frequency response
and phase characteristic of the amplifier. In all the
discussion which follows I propose to treat only the
transient due to the high-frequency cut-off, and nct
the droop due to lack of low-frequency response.
I shall, however, comment on the application of the
method to ‘“ droop” calculation at the end of the
article. But back to our frequency response. If you
have read any of the papers or bookst on the connection
between response in time and frequency response
you may have noticed that the decibel and the log-
arithmic frequency scale are not used. We use these
logarithmic units for convenience, and because our
ears are fairly logarithmic in performance. When
considering transient response we start off with a very

* See also “Principles of Servomechanisms” by G. S. Brown and
D. P. Campbell, published by Chapman & Hall.

t For example, ‘“Radio Engineers’ Handbook™ by F, E. Terman,
published by McGiaw Hill, p. 968 et seq.
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artificial signal and examine how the energy it con-
tains gets redistributed in time, and the energy in one
frequency band is as important as that in the neigh-
bouring bands. We must therefore be prepares to draw
our frequency response in terms of actual macniﬁca—
tion with a linear frequency scale.

There are two separate meanings attached to the
term ¢ transient response.”> To some people it means
the response to a square-wave input, while to others it
means the response to a very short impulse. Between
the two there is, of course, a very close mathematical
connection, and it is largely a matter of practical
convenience which is used. I prefer to use a short
impulse for test purposes, because it is then so easy
to recognize the unwanted ‘ ringing >> which appears
as a train of damped oscillations after the main impulse.
In some special circumstances, however, square
waves provide much more information : for example,
I have arranged amplifiers so that they were unstable
on the “swing’’ of a square wave and stable on the
“swong.”” On the oscilloscope the unstable condition
was shown by a growing oscillation on one half of the
cycle, followed by a decaying oscillation on the other
half. This sort of behaviour corresponds to those
bursts of high-frequency oscillation at the low-
frequency peaks, which produce such an unpleasant
sound and are rather difficult to detect without very
full tests.

For the purpose of this article, transient response
will be taken as the response to a very short impulse.
The method of calculating it depends on a basic
theorem, the truth of which we assume in almost ail
our electrical theory. That theorem 1s the Super-
position Theorem, which states, though not in these
words, that two happenings in a linear system go on
quite independently of each other. To calculate the
transient response we first of all imagine a circuit
having a particular frequency response for which the
transient response is easily calculated. We then pretend
that the actual circuit is made up of a number of these
ideal systems in parallel, having different factors in
their make-up. Each system passes a transient of the
standard type of a particular size and time scale.
Then we add all the transient voltages at any instant
together. An example will make this clearer.

The standard frequency response, which is called,
for reasons which will follow, the ““real part” response,
is shown in Fig. 1(a). The transient response of an
amplifier (or any other network) having this frequency
response is shown in Fig.2. Suppose that we find that
our amplifier has a response like that shown in Fig.
1(b). We imagine it to be made up from two units,
one having the response of Fig. 1(c) and one having
the response of Fig. 1(d). We take two curves of the
form of Fig. 2 with the appropriate scales, add them,
and there is the final transient response of the system.

‘“Real Part > Response

We must now begin to clothe these bare bones.
As I said above, we use a frequency response known
as the real part response. This is the graph of m cos 6,
where m is the voltage gain and 6 the phase shift
between input and output. For calculation purposes
this is a great nuisance, because if you are using
graphical methods of predicting the frequency response
you are working with decibels and a logarithmic
frequency scale.

The stages in the determination of the real part
response can be followed in Fig. 3. The basic response
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Fig. 2. Response to a
single short impulse of
T a circuit with the fre-
i quency response of
5 Fig. I (a).
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Fig. 3. From the gain and phase to characteristics (a)
and (b), the real part response (c) is calculated. Frequencies
are plotted on an octave (log) scale.
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Fig. 4. (a) Real part response of Fig. 3 (c) replotted to a
linear frequency scale with superimposed straight-line

approximation.

(b) (c) and (d) Trapezoidal responses which

added together give the straight line approximation of (a).
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curves, frequency response in decibels, and the phase
characteristic, are shown at (a) and (b). The frequency
scale here is an octave scale, which for all theoretical
purposes is just as good as a logarithmic scale of the
ordinary kind, in fact you can mark a logarithmic
scale in on the paper. For practical purposes, however,
it is very much better, because it uses ordinary centi-
metre square paper, which is cheaper and is always
available, It is painfully surprising how often in a
large organization the 3-decade log paper runs out,
and you have to maks do with 2-decade or 4-decade.
And if you have standard curve shapes, they just don’t
fit the paper.

In addition to the decibel and angle scales T have
marked in the voltage ratio, m, and cos 8 scales,
At each convenient frequency we take (voltage ratio)
X (cos 6) to get the real part (RP) response plotted in
Fig. 3(c). This RP response is still plotted on an
octave frequency scale, and it must be replotted on a
linear frequency scale before we can use it. This has
been done in Fig. 4(a), which shows clearly how the
logarithmic frequency scale tends to minimize the
very important high-frequency behaviour.

The solid line segment response shown in Fig. 4(a)
is the approximate form which is used for calculating
the transient response. It is not too difficult to see
that this can be represented as the sum of the three
RP responses shown as Figs. 4(b), (¢), (d), which are
all of the standard trapezoidal form. All we need to
do now is to take the transient response corresponding
to each trapezium and add them together (that for (d)
of course, must be subtracted).

At this point we introduce the essential formula.
With the terms defined in Fig. 1(a), the transient res-
ponse of a system having a trapezoidal real part
characteristic is given by the equation

_2r sin wt sind.t
b = e (52) ((F20)

whatever you do about it, this formula involves quite
a lot of arithmetic, The linear is simplified by making
use of a table or graph of the function (sin x/x). 1 have
produced a graph of this function, and it is given at
Fig. 5. For each trapezmm we then make a table of
the form shown:

_TABLE
zi 1: i i

Trapezium t | 4y sinwt | sindqt h(t)

wlt Alt

r= wy= _—
0 R—
or A 1/10,000 from Fig. 5
= 1= 2/10,000
etc.

We then transfer the last column to a new table, in
which the transient responses for the separate trapezium
are collected. Adding the response for each time we
have the total transient response : h(t) = h;(t) 4+ hy(t)

Kronecker, who introduced the delta function, a
kind of unit impulse, into analysis, says somewhere :
“ God made the integer ; the rest is the work of man.”
He could have hardly been more right about this
particular impulse problem, because the average
network transient response takes about a page full of
closely written figures. But it is only slide rule work
and addition, there is no real mathematics to it.
I have not carried through the calculation of the trans-
ient response for one example: it would make an
impressive looking page, but I do not think the Editor
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Fig. 5. Graph of the function sin x/x.

really likes to publish a page of dull arithmetic.

Before going on to some related topics let me
recapitulate. To find the response to a very short pulse,
we find the frequency and phase characteristics, com-
pute the real part response by taking (gain) X cos
(phase) at each frequency, plot this on a linear fre-
quency scale, This real part response is then expressed
as a set of trapezoidal responses and the transient
response corresponding to each trapezium is calculated.
Finally, we add (or subtract where necessary) all these
transient responses and this is the transient response
of the complete system. '

When you are considering overload problems, the
square-wave response is probably more convenient
than the impulse response. The overshoot of the
square wave gives a pretty good idea of how much
safety margin must be allowed between the steady-
state output and the maximum programme output.
Fortunately, it is very easy to proceed from impulse
response to square-wave response. In Fig. 6(a) I have
drawn a fairly typical impulse response. The figures
inside the curve show the number of millimetre
squares in each l-cm vertical strip, and the running
total from left to right is underneath. This running
total is then plotted in Fig. 6(b) and shows the square-
wave respomnse corresponding to the given impulse
response. The overshoot is very small, so that even
the most cautious user of an amplifier with this
characteristic could operate it up to its steady tone
maximum. There is ncothing more to the calculation
of the square-wave response : all the work is in the
first stage, the determination of the impulse response.

“Ringing >’

It is very useful to have some physical appreciation
of the causes of the ripples in the transient response.
The simplest view is obtained by noticing that our
input signal contains a complete frequency spectrum
extending up towards infinity. The amplifier cut-off
stops all frequencies above a particular limit and
therefore acts as though it produced a negative signal
containing all these components with phase reversed
to add to the original signal. Some of the filter text-
books show what happens to a square wave passed
through a high-pass filter, and this damped oscillation
is the wave to be subtracted from a square wave
which has passed through a low-pass circuit. The’

.

WIRELESS WORLD, AUGUST 1952



reader who checks up on this will no doubt ask why
1 haven’t pointed out that the filter books also show the
transient response of a low-pass circuit. The reason is
that I wish to emphasize the fact that the transient
distortion is due to terms above the maximum trans-
mitted frequency and that they are not in themselves
audible.

Feedback amplifiers present some special and rather
interesting transient characteristics. To the mathe-
matician the reason is very simple : the phase charac-
teristic hugs the zero line up to near the cut-off, and
then rises very sharply. That’s fine, but what does it
mean ?

Delayed Feedback

The easy way to understand what happens in a feed-
back amplifier is to watch a pulse going through it.
A typical amplifier, let us say, has a frequency response
without feedback which is 20 db down at 20 kc/s,
and we are using 20 db of feedback. The phase shift
will probably be 180 degrees at about 25 kc/s. The
delay through the amplifier, without feedback, is given
by the shape of the phase characteristic, df/dw, and
the average value of this is »/2#.25,000 or 1/50,000 sec,
or 20 psec later. Until the pulse reaches the output

the feedback cannot begin to have any effect, so that’

with a square-wave input the first 20 usec of output is
amplified by the full gain of the amplifier. At the
end of 20 usec the feedback starts to operate, but dur-
ing this short period you may have blocked off a grid
somewhere in the circuit. I do not pretend that the
description here is complete : it is, however, of very
great value if you are designing an amplifier with
feedback round an output transformer, when the early
stages are usually made with very wide band response
in order to achieve stability. These conditions lead
to a pulse at the output grid which may be about ten
times the size of the steady-state signal. There are
quite a lot of complications which can arise in particular
circumstances, but I do not propose to discuss them
here.

It is not suggested that in all cases you should

calculate the transient response before you build an

Fig. 6. Square-wave response is obtained by counting
squares in the elements of area under the impulse response
curve, and then plotting the running total.  (a) Typical
impulse response. (b) Corresponding square-wave response.
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amplifier. One feature of the theoretical method, -
however, is that it provides a background which helps
in interpreting the transient responses you can see on
the oscilloscope.

Square-wave responses of amplifiers have often
been published in Wireless World, but there is a method
of studying the transient response which has not been
mentioned, so far as I can remember. This is to
differentiate the amplifier output and thus obtain the
impulse response, at the same time making sure that
the amplifier behaves well with both negative and
positive swings.

The differentiating circuit is simple, a series
capacitance and shunt resistance after the load and
before the oscilloscope. The shunt resistance should
be fairly large compared with the load, while the
capacitance should be chosen to give high impedance
compared with the shunt resistance at all frequencies
of interest. Typical values would be 100 pF and a
few thousand ohms. The advantage of this method
is that it shows up the ripples on the response much
more clearly : ideally the square wave when differen-
tiated will just give a spike of very short duration ; all
else is error.

To conclude, a note on the calculation of ““ droop
caused by a bad low-frequency response is needed. The
procedure here is fairly simple : you plot the real part
response in just the usual way, and then take the
trapezium, or set of trapezia, which would be needed
to make the response go down to zero frequency. The
impulse response is then calculated for these trapezia,
and the square-wave response obtained by counting
squares (integration). This response is subtracted
from the ideal square wave, and there is your drooping
characteristic.

R.I.C. SPECIFICATEONS

HREE new component specifications and additional

sections for some existing ones have just been issued
by the Radio Industry Council. These specifications are
prepared in conjunction with B.R E.M.A,, R.C.E.E.A. and
R.E.C.M.F. and are for the time being intended for use
within the industry.

Sections 1 and 2 of the new specifications are available
now and these cover performance requirements and pro-
duction tests. Sections 3 of each, defining types of
the components covered, their ratings and sizes, will be
issued later.

RIC/151 deals with dolly operated switches of the
toggle type for use in d.c. and a.c. circuits not exceeding
500 V and 15 A loading and for frequencies up to 3 ke/s.
RIC/154 relates to single- and multi-wafer rotary
switches and concerns two types; one for use up to
100 ke/s and the other up to 100 Mc/s.

RIC/251 deals with valveholders of the kind commonly
used in radio receivers and other electronic equipment.
It covers two types of valveholders; those with low loss
insulating material having power factors below 0.002 at

- 1 Mc/s and those with poorer material with power factors

greater than 0.002 at 1 Mc/s. RIC/151 and 154 cost 6s
each and RIC/251 5s 6d; this is inclusive of part 3 in each
case, which will be supplied later.

The additional sections now available are parts 3 for
RIC/111, non-insulated wire-wound resistors, and defines
the standard values, tolerances, sizes and finishes; for
RIC/122, wvariable-track composition resistors, again
giving values and also switch ratings when fitted; and
for RIC/133, defining values, tolerances and ratings of
fixed ceramic grade 1 capacitors. These. complete the
three specificatjons concerned.
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