Design Feature

Feedback models
reduce op-amp circuits
to voltage dividers

An op amp’s feedback factor defines a range
of performance characteristics. Unfortu-
nately, this factor is unknown for most
op-amp applications because of a limited
feedback model. By extending this model
,ou can create a generalized feedback model
-hat veduces op-amp civcuit analysis to de-
termining voltage-divider vatios.

Jerald Graeme, Burr-Brown Corp

The feedback factor of an op-amp circuit defines that
circuit’s performance more than any other parameter.
The feedback factor sets the gain of the op amp’s input-
referred errors. These errors include offset voltage,
noise, and the error signals generated by limited open-
loop gain, common-mode rejection, and power-supply
rejection. In addition, a circuit’s feedback factor deter-
mines bandwidth and frequency stability. Yet this pow-
erful performance indicator remains unknown for most
op-amp applications. Except for the basic noninverting
op-amp connection, the classic feedback model does
not predict the feedback factors of op-amp circuits.

In the noninverting case, the closed-loop gain relates
directly to the feedback factor; the application gain
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itself determines the output errors and bandwidth.
However, the relationship between the gain and feed-
back factor does not extend to other op-amp configura-
tions. In other configurations, several conditions make
the gain-feedback relationship unclear. The input and
output signals of inverting op-amp connections, for ex-
ample, combine on the feedback network to conceal
the feedback factor. Other applications have both posi-
tive and negative feedback, which results in more than
one feedback factor. In still other applications, boot-
strap feedback adds another variable that the classic
feedback model does not take into account. Without
knowing the feedback factor, you must perform labori-
ous calculations to determine these circuits’ perform-
ance.

You can, however, extend the convenience of a feed-
back factor to these other circuits by modifying the
classic op-amp feedback model. Specific connection ex-
amples can demonstrate the possible variations to this
model. These variations are limited in number by the
two inputs of an op amp; you can connect the input
and feedback signals of an op amp in only a few ways.
The examples in Figs 1 through 11 demonstrate mod-
eling principles that will let you create a feedback
model for any op-amp configuration. The final example
is a universal op-amp feedback model that has stan-
dardized performance equations.

For the noninverting op-amp configuration, a direct
relationship between the closed-loop gain and the feed-
back factor simplifies analyzing circuit performance.
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>, closed-loop '§

The feedback factor of an op amp defines
the circuit pevformance move than any other
parametey.

Fig 1 shows this configuration as a voltage amplifier.
This noniny ertm

Ro/R,. !I’hls gain
amplifies both the mput 51gna ey and the differential
input errors (eyp) of the op amp. Multiplying the input-
referred amplifier errors by Ac; yields the resulting
output errors.

As you can see in the Fig 1 model, the mechanism
relating both the input and output errors is the feed-
back factor. This model represents the noninverting
op-amp connection by an amplifier with differential-
input-error signal e;p and feedback factor B. This feed-
back factor defines the portion of the output signal
(ep) that feeds back to the amplifier input. Writing a
loop equation for this model shows that eq=(1/
B)(e; —erp). Thus, the feedback model shows that 1/8—
rather than A, —amplifies e; and erp.

To resolve this amplification difference, define the
noninverting amplifier’s feedback factor. The feedback
factor is the fraction of the amplifier’s output that feeds
back to its input. In Fig 1, the voltage-divider action
of the feedback resistors sets the fraction of e, fed
back to the op-amp input: Beo=eoR/(R;+Ry).

This relationship defines B as the voltage-divider
ratio of the feedback network. Comparing this result
with the Acp; expression shows that Ag;=1/B for the
noninverting op-amp configuration. Thus, the circuit
and model are in agreement for the input-to-output
transmission of amplifier errors.

The types of amplifier errors this model takes into

c1rcu1t proyides the familiar, idaalf

account are numerous because e;p includes errors re-
lated to several amplifier characteristics. Each of these
characteristies produces an input-referred error source
for the op amp. The following formula represents error
sources related to op-amp input-offset voltage (Vog),
input-noise voltage (ey), open-loop gain (A), common-
mode rejection ratio (CMRR), and power-supply rejec-
tion ratio (PSSR). The last three error terms include
circuit signals: the output voltage (ey), the commo—
mode voltage (eicy), and the change in power-supp..
voltage (8Vy):

ep= ‘703‘+'e}q'+ (e(JIX) *‘(elcnl/(JhdI{I{) +‘(8‘Js/I)ESI{I{)

To find the amplifier output errors each of these
terms creates, multiply each term by the 1/B factor of
the application circuit. Some familiar error terms result
from this multiplication. The output error due to the
finite open-loop gain becomes ey/AB, which shows that
the output signal is diminished by a fraction equal to
the reciprocal of loop gain AB. The decline of open-loop-
gain A with frequency makes this output error rise,
thus shaping the closed-loop frequency response of the
circuit. The output-noise error term is ey/B, leading
to the term “noise gain” for 1/8. This description of 1/8
is accurate only under certain bandwidth limits. For
both the loop-gain and noise errors, greater insight
into circuit performance results from frequenc+
response analysis.

-,

For the noninverting circuit in Fig 1, the multiplie“ )
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Fig 1— Op-amp input errors of the circuit schematic (a) are amplified by the reciprocal of the feedback factor, 1/8, in the model (b).
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that relates the input and output errors conveniently
equals Acp;. Other op-amp configurations do not share
this convenience. For these configurations, you must
determine the 1/B factor independently of the ideal
closed-loop gain. Once you determine this factor, the
error-analysis process is the same as that of the Fig 1
circuit.

For these more-complex op-amp configurations, you
~eed to use feedback modeling to determine the feed-
wack factor. This modeling also yields frequency-
esponse and frequency-stability information. To dem-
onstrate modeling, consider the familiar noninverting
circuit in Fig 2. This noninverting configuration high-
lights the voltage-divider action of the feedback net-
work. For more general use, the network has imped-
ances Z; and Z, rather than the resistors in Fig 1. As
before, the network’s divider action controls the frac-
tion of the amplifier output fed back to the amplifier
input. The Fig 2 circuit reduces input-error-signal e;p
to the value of the open-loop gain error, ej/A. This
reduction is due to the fact that the feedback modeling
focuses only on gain and related frequency characteris-
tics. Nevertheless, the one input-referred error is suffi-
cient to define the feedback factor for use with the
previous multi-error analysis.

Fig 2 also shows the feedback model for the nonin-
verting op-amp connection. This classic feedback
model, initially developed by Black (Ref 1), is generally
proposed for op-amp circuits. However, this model ap-

plies only to the noninverting case and needs modifica-
tion for other configurations. The model represents
amplifier gain by gain-block A. A summation block,
2, drives the inputs of the gain block. The summation
block’s inputs are input-signal e; and feedback-signal
Beo. The feedback signal flows through feedback-
attenuator block B. The summation block applies differ-
ent polarities to the two signals, as the + and — signs
indicate. These polarities correspond to the amplifier-
input polarities of the actual circuit.

You can demonstrate the validity of the model by
comparing the closed-loop-gain (A¢y) responses for the
model and the circuit. For the model, the output signal
is eg=A(e;—Bey). Solving this equation for ey/e; de-
fines the modeled transfer response of the noninverting
circuit as

ACL =e()/el =A/(1 +AB).

For the actual circuit of Fig 2, the transfer response
of a noninverting amplifier is

_8_ A |
ACL_eI 1+ AL
Z.+Z,

Comparing the terms in the last two equations shows
that the feedback factor is B =Z,(Z, + Z,). Zz/(Z. +23)
The preceding analysis confirms the accuracy of the
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Yig 2—A comparison of circuit (a) and
noninverting connections.
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shows that the classic feedback model predicts op-amp performance in
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Except for the basic noninverting case, the
classic feedback model does not predict the
feedback factor of op-amp circuits.

Fig 2 model and provides the basis for determining
the frequency response and stability of the circuit. This
added performance information is based on the feed-
back factor and is not specific to the noninverting case.
Using feedback modeling, you can derive the frequency
characteristics of an op-amp circuit by analyzing the
model’s closed-loop-response equation (Ref 2). For the
noninverting case, you can rewrite this equation as

18

A =TI7/Ap Sy

Other op-amp configurations have different closed-
loop-response equations, but these equations always
have the same 1+ 1/AB denominator. This common de-
nominator is central to the bandwidth and stability
characteristics that hold for all op-amp configurations.

The frequency response of the Fig 2 circuit begins
with the value of the ideal closed-loop gain (Acp) at
de. Because the op-amp open-loop gain (A) is very
high at de, the previous closed-loop-response equation
simplifies to the ideal gain of the noninverting circuit:
Acr=1/B. At higher frequencies, the op-amp open-loop
gain declines, causing the closed-loop gain to drop from
the ideal value. This drop produces the circuit’s band-
width limit, as shown in Fig 3, which is a plot of the
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Fig 3—The feedback factor indicates op-amp bandwidth and stabil-
ity through the relationship between the 1/B curve and the open-loop-
gain curve, A.
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op amp’s closed-loop response, its open-loop gain, and
the reciprocal of the feedback factor. All three vari-
ables of the original closed-loop-response equation are
plotted on the same graph. The manner in which these
variables interact in Fig 3 provides visual insight into
bandwidth and frequency-stability limits.

The circuit-loop gain, AR, represents the amplifier
gain resource available to maintain the ideal closed-lor
response. In Fig 3, the separation between the A anu
1/B curves represents the loop gain. Because of th
logarithmic scale of response plots, this separation
equals log (A)—log (1/B), which equals log (AB). Thus,
at any given frequency, loop-gain AR is the vertical
distance between the A and 1/ curves. Where the
loop gain can no longer match the feedback demand,
the closed-loop curve drops from the ideal Aqp;. The
A and 1/B curves graphically define this point. The 1/8
curve represents the feedback demand, and ideal
closed-loop requirements are met as long as 1/8 is be-
low the open-loop-gain curve. Where this condition is
no longer true, the actual response drops and follows
the amplifier open-loop response downward. The rate
of descent for the roll-off is —20 dB/decade for most
op amps, a slope that is characteristic of a single-pole
response. The heavier curve in Fig 3 represents the
resulting closed-loop gain, Ag;.

The location of pole fp in the Ay response roll-
determines the closed-loop bandwidth of the circuity
At the pole frequency, Ac; drops from its de level
1/B to 0.707(1/B). This drop assumes that resistor feed-
back produces a frequency-independent B. Under this
condition, the gain drop occurs at the intercept fre-
quency of the A and 1/B curves. These curves are
actually magnitude response curves, and, at their inter-
cept, 1Al=11/l or [ABI=1. The single-pole roll-off of gain
A develops a phase of —90°. Thus, AR= —j1 at the
intercept, and the denominator of Eq 1 is 1+(1/
AR)=1+j1.

At the intercept, the magnitude of the denominator
increases from its de level of 1 to V2, and Ay, drops
to 0.707(1/8). Thus, for frequency-independent feed-
back factors, the 3-dB bandwidth occurs at the inter-
cept frequency of the A and 1/B curves. Where the
feedback factor is frequency dependent, the closed-loop
response still rolls off following the intercept, but this
point may not be the 3-dB bandwidth limit. Peaking
in the closed-loop response curve may move the actual
3-dB point away from the intercept frequency.

For more-common op-amp applications, the feedback
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factor is constant, and a simple equation defines the
3-dB bandwidth. The open-loop response of most op
amps has a single-pole roll-off. Virtually all intercepts
of the A and 1/8 curves occur in this single-pole range.
In this range, the gain magnitude is A =f./f, where f;
is the unity-gain crossover frequency of the amplifier.
At the intercept, f=f,, and A= 1/B =1c/fp. Solving for

the 3-dB bandwidth (BW) for most op-amp applica-
sions is BW =f, =Bf,.

This result holds for all op-amp applications having
frequency-independent Bs and a single-pole op-amp
roll-off. In other cases, you find the 3-dB response
limit by considering the added phase shift caused by
the increased amplifier roll-off or by a frequency-
dependent feedback factor.

Knowing the Ay frequency response, you can refine
the simple analysis of Fig 1 so you can apply it to
broader frequency ranges. The previous analysis
showed that input-referred errors of op amps transfer
to the amplifier output through a gain of Aci=1/B.
However, both A.;; and 1/8 are independent of the
amplifier’s high-frequency limitation. The Fig 1 analy-
sis is valid only when the op amp has sufficient gain
to support the feedback demand. The 3-dB bandwidth
marks a response roll-off that reduces amplification of
both the signal and the error. Thus, op-amp error sig-

s receive a gain of Ay =1/8 only to the frequency
where BW =pf.. Beyond this limit, the gain available
9 error signals rolls off and follows the op-amp open-
loop response in Fig 3.

This roll-off produces the difference between 1/8 and
the noise gain. The noise gain follows the roll-off Fig
3 describes even though the 1/B curve continues unin-
terrupted. The denominator of the A, equation (Eq
1) expresses this roll-off. The closed-loop error gain,
Acig, is

1/8
CLEzm' (2)

This error gain is frequency dependent. Higher-
frequency noise and CMRR and PSRR errors receive
diminishing gain. Note that A ¢ depends on only the
variables B and A. Any feedback model with B and A
blocks configured as in Fig 2 yields the same expression
for Ac . This model configuration and the Acrg result
pply to all op-amp configurations.
Using response plots like Fig 3, you can evaluate
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the frequency stability of an op-amp ecircuit from the
curve slopes. The slopes of the A and 1/B curves at
their intercept indicate phase shift for a critical feed-
back condition. At this intercept, IABI=1; a loop phase
shift of 180° makes AB= —1. Then, the 1+(1/AB) de-
nominator of Eq 1 is zero, and A, is infinite. With
infinite gain, a circuit can support an output signal in
the absence of an input signal, meaning the circuit can
oscillate. To prevent oscillation, you must keep the
phase of AB below 180°. To prevent response ringing,
you must further limit this phase to 135° or less.

You determine the loop phase shift by relating phase
shifts to the slopes of the gain magnitude and 1/8
curves. The relationship between the response slope
and the phase shift is based on the effects of response |
poles and zeros. A pole creates a —20-dB/decade re-
sponse roll-off and —90° of phase shift; a zero produces
the same effects but with opposite polarities. Addi-
tional poles and zeros add response slopes and phase
shifts in increments of the same magnitudes. The slope
and phase correlation is an accurate approximation
when the critical intercept is well separated from re-
sponse-break frequencies. When the intercept is less
than one decade from a response break, you have to
use a more detailed phase analysis (Ref 2). Even in
these cases, the response slopes provide insight into
probable stability behavior.

Relying on the slope and phase correlation, you de-
termine the feedback phase shift from the gain magni-
tude and 1/B curves. The intercept point in Fig 3 oceurs
after the amplifier’s first pole develops the 90° phase
shift but well before the second pole has any effect.
At the intercept, the gain-magnitude curve has a slope
of —20 dB/decade, and the 1/B curve has zero slope
for a net 90° feedback phase shift. The result leaves a
phase margin of 90° from the 180° needed to cause
oscillation. The zero slope of the 1/8 curve in Fig 3 is
characteristic of voltage-amplifier op-amp applications.
In these applications, resistors form the feedback net-
work. In other applications, capacitors are often part
of this network and effect a nonzero 1/B slope.

Inverting configuration extends model

You can define the feedback factor and closed-loop
gain for less obvious op-amp configurations by extend-
ing feedback modeling. The following examples dem-
onstrate modifications of the Fig 2 basic feedback
model that you need for alternate signal and feedback
connections. In each case, the A transfer-function
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The input and output signals of inverting
op-amp connections combine on the feedback
network to obscure the feedback factor.

has a denominator of 1+ (1/AB), and Eq 2 describes
the error-signal gain.

The first example is the simple inverting op amp
(Fig 4). This circuit interchanges the ground and e;
connections of Fig 2. This modification complicates de-
termining the feedback factor for both the circuit and
the model because the fraction of the amplifier output
fed back to the input is not immediately obvious. The
inverting input of the op amp is held near zero voltage
by the inherent operation of an inverting circuit. This
action results because the voltage at the inverting in-
put receives counteracting signals from e and e;.

The signals the op amp receives result from the volt-
age-divider action of the feedback network; e, and e,

/ -
€0 Z4 &7,
Z,+2, +.Z1 +2,

z,

(a)

N

Z,+ 2,

(b)

Fig 4—Inverting op-amp circuits (a) require model modifications
(b) for an input signal that is attenuated and delivered to the
opposite amplifier input.
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drive the divider at opposite ends. Superposition of
these divider actions shows that the signal at the ampli-
fier’s inverting input or summing junction (eg;) is

__eoly | eZ, .
NTZ 47, 7,42,

The first term of this equation shows that Z,/(Z,+ "~
remains the fraction of the output fed back to thu
input. Thus, for op-amp feedback networks, the fee
back factor is the voltage-divider ratio of the network,
regardless of the signals present in the actual circuit.

Analyzing Fig 4 with the feedback model requires
you to adjust for the input-signal connection. The clas-
sic feedback model of Fig 2 shows e; driving a nonin-
verting or positive input at the summation point. This
arrangement corresponds to the signal connection at
the amplifier’s noninverting input. However, in Fig 4,
e; is coupled to the amplifier’s inverting input rather
than its noninverting input. Fig 4 accommodates this
difference by changing the sign of the corresponding
summation input. In op-amp feedback modeling, assign
all summation inputs the same polarities as the corre-
sponding amplifier inputs.

Also, the Fig 2 model shows e; connected directly
to the summation point in accordance with the direct

connected to the feedback network rather than direct

to the amplifier input. This network attenuates t

amplifier input as the equation for ey reflects. To in-
clude this attenuation in the feedback model, Fig 4
adds feed-forward factor «. This feed-forward factor
is the fraction of the input signal fed forward to the
amplifier input. As with the feedback factor, a voltage-
divider ratio of the feedback network defines the feed-
forward factor. For a, the divider ratio is taken from
the opposite end of the feedback network. For Fig 4,
a="7y/(Z,+Z,). In practice, every input signal connec-
tion to a feedback model has a corresponding «. For
direct signal connections to amplifier inputs, « is unity.

connection of the circuit. Fig 4, however, shows 3'&

Extended model simplifies inverter analysis

Using these model adjustments, you can extend feed-
back analysis to predicting the performance of invert-
ing circuits. The feedback model of Fig 4 sums the
input and feedback signals for e; = A(— ae; — Beg). Solv-
ing this equation for ey/e; yields the model response.
Fig 4 compares the model with the corresponding ci.
cuit. Comparing terms confirms the defined values of

EDN June 20, 1991
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a and B. Rewriting the model result shows that the
closed-loop gain of the generalized inverting circuit is

ACLz_;a/i (3)

1+1/AB

When the loop-gain AR is large, the equation reduces
‘0 the ideal closed-loop gain of Acp = —a/B= —Zy/Z,.

The magnitude of this closed-loop gain is lower than
she (Z; + Z,)/Z, of the noninverting case, but the band-
width is not correspondingly higher. This relationship
results from the fact that the feedback factor—not the
closed-loop gain—controls the bandwidth. The two cir-
cuits have the same feedback factor even though their
gain magnitudes are different. As a result, the gain-
bandwidth product drops when the circuit changes
from the noninverting to the inverting configuration.

To quantify bandwidth for the inverting case, the
previous noninverting analysis transfers directly. This
transfer results from the standard form of the response
equations. The noninverting bandwidth was derived
from the denominator of the A¢; response (Eq 1). That
same 1+ (1/AB) denominator applies to the inverting
case as Eq 3 shows. In both cases, the Ay;; numerator
reflects the ideal closed-loop gain. As in Fig 2, the
bandwidth for the inverting op-amp connection is Bf;,
aven though the closed-loop gain has decreased.

This Bf; relationship extends to all other op-amp
configurations as well. You can write the transfer re-
sponse of any negative-feedback system in a form that
includes the 1+ (1/AB) denominator. In this form, the
numerator of the response equation reflects the ideal
closed-loop gain. This gain describes the transfer re-
sponse when AR>>1, thus making the denominator
essentially unity. The standard equation for the gener-
alized transfer response for any op-amp configuration is

ACLI

Ac=TT/AR

Feedback modeling can reduce the transfer response
of any op-amp connection to this generalized form. The
conclusions you draw from this standard equation
translate to all op-amp connections. Rederiving the
characteristics of each individual configuration is un-
necessary. The only variable factor is ideal-gain Ay,
which you express in terms of o and B combinations
that are unique to a given configuration. For a given
configuration, you can find Aq; by writing the re-
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sponse of the feedback model in the standard form.

You can also express the op-amp input-error gain,
AcLg, in a generalized form. In this case, there are no
differences between the equations for different ampli-
fier configurations. For Fig 4, this gain is the gain of
error-signal e,/A. This gain also affects the other input-
referred error signals of e;p. For the Fig 4 circuit, you
can find Ay by using superposition and a test signal.
Setting e; to zero, you add a second error signal, such
as noise (ey), to the ey/A error signal. This procedure
has the same effect as adding an ey generator in series
with the amplifier’s noninverting input. The gain of
this configuration amplifies such a signal, and

1B

ACLE—1+1/AB @)

Thus, A for the inverting configuration is the
same as that of the noninverting case. Further exam-
ples show this equation to be true for all configurations.
Op-amp input-referred error signals are amplified by
1/B up to the response roll-off the 1+ 1/(AB) denomina-
tor creates. From the Fig 3 discussion, this roll-off
starts with the closed-loop bandwidth of he amplifier.
Beyond this bandwidth limit, Aq g follows the op amp’s
open-loop response.

Multiple paths extend possibilities

Other variations of op-amp configurations result
from dual feedback paths or dual input-signal connec-
tions. Fig 5 shows a configuration with feedback to
both amplifier’s inputs. A voltage-follower connection
provides unity feedback to the inverting input, and a
feedback network supplies positive feedback to the
noninverting input. Normally, positive feedback de-
grades circuit stability, but, in the Fig 5 example, the
opposite is true. Positive feedback is useful when a
greater negative feedback makes the overall cireuit
feedback negative. The combined feedback effects de-
termine circuit operation, as feedback modeling illus-
trates.

The purpose of the dual feedback is to achieve volt-
age-follower operation with an op amp that is not phase
compensated for unity-gain stability. Normally, a volt-
age follower must have unity-gain stability because of
the follower’s unity feedback. However, some op amps
lack this stability because of reduced internal phase
compensation. Numerous op amps offer different de-
grees of phase compensation. Often, one product ver-
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You can extend the feedback-factor conven-
ience to all op-amp civcuit configurations
through feedback modeling.

sion will have unity-gain stability but will also have a
far slower slew rate than a lesser compensated version.
The slew rate of the OPA37 in Fig 5 is 12V/usec, and
the device’s phase compensation is set for gains of five
or greater. A companion product, the OPA27, has
unity-gain phase compensation, but its greater com-
pensation reduces the slew rate to 2V/usec. Typically,
the devices’ slew rates differ by a factor approximately
equal to the minimum gain of the lesser compensated
version.

Modifying the circuit’s feedback factor makes the

higher slew rate available to the voltage follower. The
modification reduces the feedback factor without alter-
ing the closed-loop gain, which removes the require-
ment for unity-gain phase compensation. The fre-
quency stability of an op-amp configuration depends
on the phase shift at the intercept of the A and 1/B
curves. Fig 5 shows these curves for the reduced phase
compensation and added positive feedback of the exam-
ple. Because of the reduced compensation, the open-
loop-gain curve A exhibits two response poles above
the unity-gain axis. As a result, the slope of this curve
is —40 dB/decade when the curve reaches unity gain.

This slope corresponds to 180° of phase shift and
indicates oscillation for a 1/8 intercept at unity gain.
Normally, this intercept would result with a voltage
follower where 1/ =1. However, the positive feedback
of the Fig 5 circuit reduces the net feedback factor to
raise the 1/B curve, The raised curve places the inter-

cept in a region of reduced open-loop-gain slope and
ensures frequency stability.

Raising the 1/8 curve also moves the intercept back
in frequency, which reduces the closed-loop bandwidth.
In practice, this bandwidth reduction is the same as
that produced by using the unity-gain compensated
version of the amplifier as a conventional voltage fol-
lower. In that case, the added internal phase comper
sation reduces the bandwidth. To get the greatest
bandwidth from the circuit in Fig 5, set the intercep
at the level of the amplifier’s minimum rated gain.
This intercept condition results in 1/8=Ayn, Where
Ayin is the minimum stable gain the manufacturer
specifies for the amplifier.

To permit this feedback setting, you must determine
the value of B for Fig 5. Once again, the feedback-factor
definition and the basic feedback model fail in this task.
Determining the fraction of the output fed back to the
input is complicated by the dual feedback paths. The
classic feedback model of Fig 2 offers no help because
it represents only one feedback path. Fig 6 extends
the Fig 2 model to the dual-feedback circuit of Fig 5
by incorporating two adjustments. First, the model
adds feed-forward factor o in series with the signal
input, following the process described for Fig 4. How-
ever, the model couples e to the positive inputs on the
amplifier and summation elements. .

The second model change is the addition of the . %
feedback path, which connects to a positive input or‘j}

OP-AMP FREQUENCY RESPONSE
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Fig 5—Feedback to both op-amp inputs separates the 1/ and closed-loop-gain curves (a) for this high-slew-rate voltage follower (b).
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the summation element. The summation polarity then
matches that of the amplifier input the B, feedback-
path affects. Feedback through B_ remains connected
to a negative summation input, and the two feedback
polarities reflect the differential nature of the ampli-
fier. The differential inputs of an op amp cause the
amplifier to respond to the difference between the sig-

als at the two amplifier inputs. Thus, the amplifier
subtracts the two feedback signals when the signals

A -
% A b——0 ¢4
A
N +
+
22
ey Z4 eIZZ/
Zy+Z, Zy+Z; 7
1
(@ .
. b= 1
B_
60— « —v@——— A Oeg
+
e 22
Z‘&ZZ
B
b A aA
® oS T AB B

Fig 6—The dual feedback of the circuit in a results in a model with
‘eedback factor, B, which is equal to the difference between the nega-
tive and positive feedback factors (b).

EDN June 20, 1991

are connected to opposite amplifier inputs. The model
repeats this subtraction by using opposite signs for
feedback inputs to the summation element.

Dual feedback subtracts feedback factors

The differential inputs’ subtraction results in a net
feedback factor that is the difference between the posi-
tive and negative feedback factors. Analyzing the cir-
cuit and model results in the response equations in Fig
6. The response denominator is of the standard form
1+ (1/AB) when the net circuit feedback factor is
B=B_—PB.. Then, the equations confirm the Fig 6
model to the amplifier configuration, and

a/B Acy

A =TI/AR T+ 1/AB

To determine the ideal gain, A =a/B, express the
a and B factors in terms of circuit elements. Although
the equations for Fig 6 define these factors, depending
on detailed equations is no longer necessary. Once the
equations confirm the model, you do not need them
to repeatedly analyze a given configuration. The AL
expression of the model defines Acy; in terms of factors
you can determine by inspection. You determine the
feedback and feed-forward factors from the associated
voltage-divider ratios. The ratio is unity for the direct
output-to-input connection of the Fig 6 B_ feedback.
However, the Fig 6 model also holds for other cases
in which a feedback network sets §_.

For the specific circuit of Fig 6, the result is the
desired voltage-follower response; however, the cireuit
amplifies any errors. Reading the individual factors
from the Fig 6 circuit and subtracting the two 8 factors

gives = ho— B+
e
=M= 2 . = ZY"ZL
@ 'B Zl+z2 B _2‘?// ‘
- 2+ 2T

Thus, Acy;=o/B =1 for the desired voltage-follower re-
sponse. However, with <1, the input errors of the

amplifier are amplified by 1/B>1. Given the B selection
for Fig &, 1/8 = Ayny/Then, the input errors are ampli-
fied by a

input £rrors are amplified by a factor of five, and the
slew Kate improves by a factor of six. The error-signal

(/ﬂ/b;n >4 cHoann /624) écw fetframr

- Sy

T ——

imately the same factor that slew rate ||
is imp;yVed. For the specific components of Fig 5, the ||



With feedback wmodeling, you can simplify
op-amp circuit analysis to the determination
of voltage-divider ratios.

gain rolls off in accordance with the amplifier open-loop
response, as the equation for Aq xz (Eq 4) shows. You
can remove the increased error gain for the input offset
voltage by using a capacitor in series with R, in Fig 5.

The reduced input impedance of the Fig 5 circuit
also increases the error. However, this effect is less
than you would first expect. At first, the input imped-
ance of the circuit appears greatly reduced because
the input signal drives a feedback network. Normally
a voltage follower presents the very high impedance
of an op-amp input to the signal source. When driving
the feedback network in an inverting circuit, the input
signal sees the impedance of the input resistor. This
great difference in input impedance would also result
for Fig 5 except for the bootstrap action of the positive
feedback. The follower action of the circuit keeps both
ends of the feedback network at almost the same signal
level. The only signal appearing on Z, in Fig 6 is the
small eo/A. Thus, the feedback network draws very
little current from the signal source. The resulting in-
put impedance is R,=AZ.,.

Dual inputs expand options

Still other op-amp configurations couple input signals
to both inputs of the amplifier. For these configura-
tions, modify the feedback model on the input rather
than the feedback side. The input signals coupled to
the op amp may be from the same signal source or
from separate sources. In the simplest case, the same
signal source supplies both op-amp inputs, serving to
illustrate input modifications for the model.

Fig 7 shows the dual-coupling of a signal source to
the two op-amp inputs. This circuit selectively ampli-
fiex the op amp’s input-error signal for greatly im-
proved resolution of error measurement. Distortion
measNrement is a prime beneficiary of this selective
put-error-signal e, appears across R, and de-
feedback current of e;p/R;. This current also

from the voltage-divider ratio of the
feedback network.

The amplification excludes test-signal e; because this
signal does not appear across R,. The circuit bootstraps
R, on top of ej; the resistor supports only the amplifier-
input-error signal. Signal e; shifts the op-amp input
voltages without developing a voltage across R,. With
no related signal on R,, the op-amp output follows e;.
Thus, signal e, receives only unity gain from the circuit,
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and the amplifier error signal receives a gain of 1/B.
Because of this selective amplification, the amplified
error signal is far more prominent at the amplifier
output. The selective gain reduces the dynamic-range
requirements for the error measurement. In addition,
the unity gain presented to e, lets this signal span the
full voltage range of the op-amp input without causing
output saturation.

However, this selective gain also reduces the fee:
back factor, resulting in bandwidth reduction. Distor-
tion measurements must accurately predict the resul
ing bandwidth to determine the number of higher-
frequency harmonics the circuit amplifies. From a cir-
cuit perspective, the Fig 7 configuration illustrates the
effect of B on bandwidth. For this circuit, the output
voltage is e =e;— (ep/B). Thus, e, diminishes from the
level of e; in the presence of eyp. Part of signal ey, is
the gain error, ey/A, which causes higher-frequency
roll-off in the closed-loop response. For bandwidth con-
siderations, ey/A replaces ey, and the resulting output
voltage is ep=e;—(ex/AB). As open-loop-gain A de-
clines with frequency, the output signal increasingly
diminishes. At some point, the drop in output reaches
the —3-dB point of the bandwidth limit. The circuit
reaches this limit sooner because of the presence of B
in the e, equation. The roll-off effect of A is amplified
by 1/B, which reduces the bandwidth by the same fac-
tor. As before, BW=pf,.

The performance of Fig 7 is very similar to that 01
Fig 5. Both circuits maintain unity gain to the signa.
source but the amplifier operates with B<1. For Fig
5, the reduced feedback factor permits less amplifier
phase compensation but results in greater gain to the
error signals. Fig 7 intentionally adds gain to the error

Lo —

Fig 7—This circuit results in input signal coupling to both of the
op-amp inputs when R, is boot-strapped to selectively amplify th
error signal, ep.
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Using information based on the feedback
factor, you can determine the frequency ve-
sponse and stability of an amplifier as well
as its gain.

signal for measurement applications. The only differ-
ence between the two circuits lies in their applications.
In practice, the circuits realize the same results
through different configurations. From an applications
standpoint, the two circuits are interchangeable.

The primary difference between the two circuits is
in the feedback modeling. Fig 5 demonstrates dual
feedback, and Fig 7 shows dual input connections. Fig
8 shows the Fig 7 modeling results by redrawing the
circuit to show the two input connections. The Fig 8
cireuit couples input-signal e; directly to the amplifier’s
noninverting input. For the model, the direct connec
tion represents an a of unity and connects e directl
to a positive input of the summation element.

The circuit also couples signal e;, which a feedbagk
network attenuates, to the inverting input of the ampli-
fier. This attenuation defines a feed-forward fagtor
equal to the voltage-divider ratio Zy/(Z,+Z,). In/the
model, the a block represents this second input copinec-
tion, which goes to a negative summation input. Fi-
nally, a feedback path couples the circuit output/to an
amplifier input. In this path, the attenuation pf the
feedback network is Z,/(Z, + Z,), which is the feedback
factor. This feedback path connects to another negative
summation input in the model, which corresppnds to
the inverting amplifier input connection of the circuit.

Analyzing the completed model produces a transfer
response of the expected form:

A-a)B__Acu_ /
1+1/AB 1+VAB

Ac=

The denominator of this equation is the 1+(1/AB) re-
sult fommon to all of the previous results. Thus, band-
width and stability conclusions previously drawn from
this denominator also apply to the equations for Figs
7 fand 8. The closed-loop bandwidth is Bfc, and fre-

ency stability conditions relate to the intercept of
he A and 1/8 curves of Fig 3. The expression for the
deal closed-loop gain for the Fig 7 and Fig 8 circuits

is the numerator of the equation, (1 — a)/B. Substituting \

the expressions for a and B in this expression shows
that ACLX =1.

Modeling extends simplicity

You can readily extend the modeling principles of
the preceding examples to any op-amp application. Us-
ing this approach, the final circuit analysis reduces to
a single loop equation. Moreover, feedback modeling
simultaneously defines many circuit-performance char-
acteristics while avoiding the more complex response
analysis of the circuit. You analyze the actual circuit
only when questions arise about the validity of the
feedback model. The three steps of feedback analysis
are drawing the model, determining the o and B fac-
tors, and finding the transfer response.

Drawing the model centers on the op amp’s differen-
tial inputs. Feedback or input-signal connections to the
op amp’s inverting input are drawn as connections to
negative inputs on the model summation element. Con-
nections to the op amp’s noninverting input are drawn
as connections to positive summation inputs. An a or
B attenuator accompanies each of these input and feed-

Fig 8—The direct and attenuated input connections of the circuit in a couple to opposite-polarity inputs of the feedback model (b).
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The generalized feedback model covers each
of the four possible input and feedback con-
nections to the two op-amp inputs.

back connections. With just these polarity and attenu-
ator guidelines, you draw the model itself. From the
feedback networks, you find the individual a and B
terms as voltage-divider ratios. Feedback and feed-
forward signals drive a given network from opposite
ends, resulting in different divider ratios. You find the
two corresponding ratios by using superpositioning to
separate the effects of the feedback and feed-forward
signals. Once you determine these ratios, the feedback
model is complete.

Next, you analyze the model to determine the net
feedback-factor of the circuit and to find the ideal
closed-loop gain. For most op-amp configurations, you
can read the net B directly from the circuit. You read
the individual B_ and B, factors from the voltage-
divider ratios of the feedback networks. You can find
the net feedback factor of the circuit from p=g_-8..
This step alone defines numerous performance errors
as described for Fig 1. You can also find the bandwidth
at this point through BW =gf,. Where B varies with
frequency, the value of beta used to find the bandwidth
is the value at the intercept of the A and 1/B curves.

To complete the process and find Ay, analyze the
model for its transfer response. This step requires one
loop equation, which describes the model summation
times the open-loop-gain A. Solving this equation for
AcL=eg/e; defines the transfer response of the circuit
in terms of A and the o and B factors. You then manipu-
late this result to arrange it in a standard form. The
denominator of the Agy result always reduces to the
form 1+(1/AB), and the resulting numerator is the
ideal closed-loop gain, Ay;. This standard-form re-
quirement helps you detect analysis and modeling er-
rors.

Complex circuit yields to modeling

To illustrate feedback analysis, consider the voltage-
controlled current source of Fig 9 (Ref 3). Because of
positive feedback, this op-amp connection produces an
output current that is independent of the load voltage.
The voltage load R;, develops acts as an input signal
to the op amp’s noninverting input. The amplification
of this signal adjusts the op amp’s output voltage by
an amount that accommodates the load voltage. The
added output voltage supplies a correction current
through the positive feedback network Ryn and R,
form. This current accurately compensates the effect
of the load voltage as long as you establish the illus-
trated 1:1/n resistor ratios.

The Fig 9 circuit is well known, but its performance
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characteristics are not obvious. The circuit structure
offers little insight into its bandwidth and the effects
of input error signals. The voltage swing at the ampli-
fier’s output due to input and load voltages is not appar-
ent. Furthermore, the circuit’s positive feedback raises
the question of frequency stability. Straightforward
analysis of all these performance characteristics is a
formidable task.

Feedback modeling reduces the task to one loo~
equation through the information you derive from the
feedback factor and closed-loop response. Fig 10 show
the feedback-analysis circuit of Fig 9. This format dis-
plays positive and negative feedback factors through
voltage dividers. To model the Fig 10 circuit, you in-
clude positive and negative feedback paths around the
gain block. These paths meet summation-element in-
puts bearing the same signs as the corresponding am-
plifier inputs in the circuit. The model couples input-
signal e; to the summation element through an a block,
which represents the attenuation of the feedback net-
work e; drives.

To define the a and B terms, take the corresponding
voltage-divider ratios from the circuit diagram. For

the circuit of Fig 10,

v < ot R
_ 1 _n _ nRL )
“Ton =T+ B+_R2+(1+n)RL

a

i

Fig 9—A complex feedback structure confuses calculation of cir
cutt performance for this well-known current source.
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Using feedback modeling, you can derive
the frequency characteristics of an op-amp
circuit by analyzing the model’s closed-loop
response equation.

You find the net circuit feedback factor from

R
B=Rra+nE. B

Generalized results define performance

With this simple analysis, you know the bandwidth,
stability, and effects of amplifier errors for the Fig 9
circuit. The resistance values yield a B of 0.076. As a
result, the circuit bandwidth at gf; is a small part of
the available amplifier bandwidth. For the OPA1lll,
f.=2 MHz, and the circuit’s bandwidth is 152 kHz.
Even less bandwidth results with higher values of load
resistance. As the B equation shows, the net feedback
factor decreases to zero as Ry becomes very large.
For Fig 9, an increase in load resistance from 1 to 10
kQ reduces the circuit bandwidth from 152 to 16 kHz.
Normally, the values of R, and R,/n would suggest a
low-gain circuit for which the bandwidth would ap-
proach that of f,. However, an almost equal B, coun-
teracts the near-unity B_, and the resulting feedback
demand for amplifier gain is high.

The frequency-stability information revealed by the
B equation is twofold. First, the equation shows that
B is always a positive value, indicating that negative
feedback prevails regardless of the load resistance.
Otherwise, the positive feedback could have dominated
the circuit to cause latching or oscillation. The B equa-

g

tion provides further stability information through
graphical analysis. Oscillation can still result if R, is
an inductive load, such as that of a motor. In this case,
the load impedance rises with increasing frequency,
causing a corresponding decrease in B. This decreasing
B would cause the 1/8 curve of Fig 3 to rise with
frequency. The increased 1/B slope signifies greater
phase shift in the loop at the intercept of the 1/8 and
A curves. This increased feedback phase shift signiﬁeﬁ\
potential response ringing or even circuit oscillation.
To retain stability in these cases, bypass the load wit!
a capacitor.

The B equations also show the effects of amplifier
input errors on the Fig 9 circuit output current. As
with all op-amp configurations, the input-referred er-
rors ey includes are first amplified by 1/8. This amplifi-
cation determines the error effects at the op amp’s
output. From this output, the positive feedback net-
work feeds back the errors through an attenuation
factor of B,. This attenuated signal is across load Ry,
and develops an output error current of (8./B)(ep/RL).
Typically, B./B is large, and the effects of e; are ampli-
fied in the load current. For the components
of Fig 9, B./B=11, which is the gain the circuit
applies to the errors of ey, before those errors appear
across Ry.

Continuing the model analysis yields the Fig 9 trans-
fer response. You derive the current-output response
from the input-to-output voltage response, ey/e;. Usiny )

Fig 10—Translating the Fig 9 circuit into o feedback-analysis circuit (a) and then a feedback model (b) simplifies analysis and extend

performance insight through standardized feedback results.
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Frequency plots let you evaluate the fre-
quency stability of an op-amp civcuit from
the A and 1/B curve slopes.

the Fig 10 model, you find ey/e; from a single loop
equation that you then reduce to standard form. From
the model, eo=A(—ae;—B_ey+B.ey). Solve this ex-
pression for A =ey/e; and manipulate the result to
develop the standard denominator of 1+ (1/AB). For
Fig 10,

e —alf

Ag === ’

“e 1+1AB

You then translate this result to a current output by
first noting that the load voltage equals the positive
feedback signal, or e;, =B, e,=i.Ry. Solving this equa-
tion for e, and substituting the result in the Ay, equa-
tion yields a Fig 9 response of

i, -UR,
e, 1+1/AB

Generalized model covers all

Drawing and analyzing feedback models adds insight
to op-amp circuit operation and works with any op-amp
application. However, op-amp circuit analysis is even
simpler with a generalized feedback model and stan-
dard response equations. These standardized results
avoid even the single loop equation of the model analy-
sis and hoid for all practical applications. Op-amp cir-
cuit analysis then reduces to finding voitage-divider
ratios, which you can generally determine by inspec-
tion.

The feedback model of Fig 11 represents all possible
op-amp circuit configurations. This model includes in-
put and feedback connections to both the positive and
negative summation inputs. The separation between
the possible and the practical excludes op-amp configu-
rations that have no end value.

The Fig 11 model represents each of the four possible
input and feedback connections to the two op-amp in-
puts. Most op-amp configurations do not use all of these
connections. In these cases, you set the associated «
or 3 terms to zero. Similarly, many op-amp applications
have direct input or feedback connections to the op-
amp inputs. In these cases, a network does not attenu-
ate the related signals, and you set the associated o
and B terms to unity. For example, the Fig 10 circuit
has no input-signal coupling to the op amp’s nonin-
verting input. This lack of input-signal coupling sets
a, to zero, and the Fig 11 model reduces to the model
in Fig 10. Similarly, the Fig 8 circuit has no feedback
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Fig 11—A generalized feedback model and standardized response
equations reduce op-amp circuit analysis to finding o and 8 voltage-
divider ratios.

coupling to the op amp’s noninverting input, and the
input signal connects directly to this input. In this
case, B, =0, a, =1, and the generalized model reduct ’
to the model in Fig 8.

Analyzing the generalized model yields standardizeu:)
equations that also lend themselves to specific op-amp
applications. For the model of Fig 11,

A =20 a/B — Acwr
CL7e 1+1/AB 1+1/AB (5)
B=B-—B:.

This analysis immediately communicates three results
common to all op-amp configurations. First, the net
feedback factor of the circuit is B=B_ —B.. In all cases,
the differential inputs of the op amp subtract one feed-
back signal from the other. Next, the denominator of
the A equation is the familiar 1+ (1/AB). Thus, the
bandwidth and frequency-stability conclusions drawn
using this denominator still apply. As in Fig 3, the
intercept of the 1/8 and A curves sets the Fig 11 band-
width BW=pf.. Frequency stability relates to the
curve slopes at this intercept, as also described for Fig
3. Finally, the numerators of Eq 5 show that the idea!
closed-loop gain is Acp=a/B regardless of the op-am,
configuration. Because of the denominator form of Eq
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You can write the transfer vesponse of any
negative-feedback op-amp system in a form
that includes the 1+ 1/(AB) denominator.

5, Ay, reduces to the numerator term when loop-gain
ApB is large. A large AP again denotes the ideal region
of operation.

Two variables in the generalized A¢;, equation are
defined differently for different op-amp configurations.
This flexibility permits one standard response equation
for all configurations. In the Ay, equation, both a and
e; depend on the input connections of the specific cir-
cuit. The varied participation of the modeled a_ and
a, determine feed-forward factor a. One or the other
of these a terms applies to most op-amp connections;
other connections involve both terms. Input signal con-
nections dictate the relevant o terms. a_ attenuates
signals connected to the e, terminal of the model; the
signals then go to a negative summation input. For
signals at the e, input, a, is the attenuator, and the
summation input has a positive polarity.

The input signal, e;, in the standard equation accom-
modates this a variability; the modeled input signals
are e; and e,. This generalized e; signal permits various
combinations of signals e, and e,. You can model the
input signal connections using one equation for invert-
ing, noninverting, differential, and common-mode
cases. For each of these cases, a corresponding o term
results as summarized in the following table:

Cases ] o
Inverting e1 -
Noninverting eo o4
Differential e~ @1 o =
Common mode e1=ep oy —d -

Examining this table shows agreement with previous
modeling results. From the table, an inverting input
connection of e, couples through o _ to a negative input.
Hence, the table’s o term and polarity. This is the
input case for Fig 10, which has a —a= —a_ term in
the response equation’s numerator. For Fig 6, the in-
put signal couples to a noninverting amplifier input for
a a=a, term in the numerator of Eq 5. Similarly, Fig
8 shows a common-mode input case, and the resulting
response numerator has a factor of 1—a, which is
o, —o_. For the differential-input case, the table

For the model, consider an input error source, —epp,
direetly coupled to a positive summation input. This
addition indicates that the amplifier input errors are
in series with the input circuit. With the ey, source
connected to the model, analysis shows that Fig 11
amplifies input-referred errors by the same gain de-

scribed earlier.
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